Pasek boczny

statpqpl:porown3grpl:nparpl:j_terpstrpl

Test Jonckheere-Terpstra dla trendu

Test Jonckheere-Terpstra dla trendu (ang. the Jonckheere-Terpstra test for ordered alternatives) opisany niezależnie przez Jonckheere (1954) 1) i Terpstra (1952)2) może być wyliczany w takiej samej sytuacji jak ANOVA Kruskala-Wallisa, gdyż bazuje na tych samych założeniach. Test Jonckheere-Terpstra inaczej jednak ujmuje hipotezę alternatywną - wskazując w niej na istnienie trendu dla kolejnych populacji.

Hipotezy są upraszczane do median:

\begin{array}{cl}
\mathcal{H}_0: & \theta_1=\theta_2=...=\theta_k,\\
\mathcal{H}_1: & \theta_1\geq\theta_2\geq...\geq\theta_k, $ z co najmniej jedną nierównością ścisłą$
\end{array}

Uwaga!

Określenie: „z co najmniej jedną nierównością ścisłą” zapisane w hipotezie alternatywnej tego testu oznacza, że co najmniej mediana jednej populacji powinna być większa niż mediana innej populacji w kolejności określonej.

Statystyka testowa ma postać: \begin{displaymath}
Z=\frac{L-\left[\frac{N^2-\sum_{j=1}^kn_j^2}{4}\right]}{SE}
\end{displaymath}

gdzie:

$L=$ - suma wartości $l_{ij}$ uzyskanych dla każdej pary porównywanych populacji,

$l_{ij}$ - liczba wyników wyższych niż zadana wartość w grupie występującej w następnej kolejności,

$SE=\sqrt{\frac{A}{72}+\frac{B}{36N(N-1)(N-2)}+\frac{C}{8N(N-1)}}$,

$A=N(N-1)(2N+5)-\sum_{j=1}^kn_j(n_j-1)(2n_j+5)-\sum_{l=1}^gt_l(t_l-1)(2t_l+5)$,

$B=\sum_{j=1}^kn_j(n_j-1)(n_j-2)\cdot\sum_{l=1}^gt_l(t_l-1)(t_l-2)$,

$C=\sum_{j=1}^kn_j(n_j-1)\cdot\sum_{l=1}^gt_l(t_l-1)$,

$g$ - liczba grup różnych rang wiązanych,

$t_l$ -liczba przypadków wchodzących w skład rangi wiązanej,

$N=\sum_{j=1}^k n_j$,

$n_j$ - liczności prób dla $(j=1,2,...k)$.

Uwaga!

By można było przeprowadzić analizę trendu, należy wskazać oczekiwaną kolejność populacji przypisując im kolejne liczby naturalne.

Wzór na statystykę testową $Z$ zawiera poprawkę na rangi wiązane. Poprawka ta jest stosowana, gdy rangi wiązane występują (gdy nie ma rang wiązanych wzór na statystykę testową sprowadza się do oryginalnej formuły Jonckheere-Terpstra nie zawierającej tej poprawki).

Statystyka $Z$ ma asymptotycznie (dla dużych liczności) rozkład normalny.

Przy znanym oczekiwanym kierunku trendu, hipoteza alternatywna jest jednostronna i interpretacji podlega jednostronna wartość $p$. Interpretacja dwustronnej wartości $p$ oznacza, że badacz nie zna (nie zakłada) kierunku ewentualnego trendu. Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności $\alpha$:

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Okno z ustawieniami opcji testu Jonckheere-Terpstra wywołujemy poprzez menu StatystykaTesty nieparametryczneANOVA Kruskala-Wallisa lub poprzez Kreator.

Pprzykład c.d. (plik satysfakcjaZpracy.pqs)

Podejrzewa się, że osoby lepiej wykształcone mają wysokie wymagania zawodowe, co może zmniejszać poziom satysfakcji z pierwszej pracy, która często takich wymagań nie spełnia. Dlatego też warto przeprowadzić analizę trendu.

Hipotezy:

$
\begin{array}{cl}
\mathcal{H}_0: & $brak wskazanego trendu w poziomie satysfakcji $\\
& $z pierwszej pracy,$\\
\mathcal{H}_1: & $istnieje wskazany trend w poziomie satysfakcji z pierwszej pracy.$
\end{array}
$

W tym celu wznawiamy analizę przyciskiem , zaznaczamy opcję Test trendu Jonckheere-Terpstra i kolejnym kategoriom wykształcenia przypisujemy kolejne liczby naturalne.

Uzyskana jednostronna wartość $p=0.000045$ i jest mniejsza niż zadany poziom istotności $\alpha=0.05$, co przemawia na rzecz rzeczywiście występującego trendu zgodnego z oczekiwaniami badacza.

Istnienie tego trendu możemy również potwierdzić przedstawiając procentowy rozkład uzyskanych odpowiedzi.

1)
Jonckheere A. R. (1954), A distribution-free k-sample test against ordered alternatives. Biometrika, 41: 133–145
2)
Terpstra T. J. (1952), The asymptotic normality and consistency of Kendall's test against trend, when ties are present in one ranking. Indagationes Mathematicae, 14: 327–333
statpqpl/porown3grpl/nparpl/j_terpstrpl.txt · ostatnio zmienione: 2022/07/14 11:58 przez admin

Narzędzia strony