Test chi-kwadrat dla wielowymiarowych tabel kontyngencji

Test $\chi^2$ dla wielowymiarowych tabel kontyngencji (ang. Chi-square test for multidimensional contingency tables) jest rozszerzeniem testu chi-kwadrat dla tabel (RxC) na więcej niż dwie cechy.

Podstawowe warunki stosowania:

Hipotezy:


$
\begin{array}{cl}
\mathcal{H}_0: & O_{ij...}=E_{ij...} $ dla wszystkich kategorii,$\\
\mathcal{H}_1: & O_{ij...} \neq E_{ij...} $ dla przynajmniej jednej kategorii,$
\end{array}
$

gdzie:

$O_{ij...}$ i $E_{ij...}$ to liczności obserwowane w tabeli kontyngencji i odpowiadające im liczności oczekiwane.

Statystyka testowa ma postać:

\begin{displaymath}
\chi^2=\sum_{i=1}^r\sum_{j=1}^c\sum...\sum\frac{(O_{ij...}-E_{ij...})^2}{E_{ij...}}.
\end{displaymath}

Statystyka ta ma asymptotycznie (dla dużych liczności oczekiwanych) rozkład chi-kwadrat z liczbą stopni swobody wyznaczaną według wzoru: $df = (r - l)(c - 1)(l - 1) + (r- l)(c- 1) + (r- 1)(l- 1) + (c- 1)(l- 1)$ - dla tabeli o 3 wymiarach.

Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności $\alpha$:

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Okno z ustawieniami opcji wielowymiarowego testu chi-kwadrat wywołujemy poprzez menu StatystykaTesty nieparametrycznechi-kwadrat (wielowymiarowy) lub poprzez ''Kreator''.

Uwaga!

Test ten jest możliwy do wyliczenia tylko na podstawie danych surowych.

1)
Cochran W.G. (1952), The chi-square goodness-of-fit test. Annals of Mathematical Statistics, 23, 315-345

Narzędzia witryny