Test chi-kwadrat dla trendu dla tabel Rx2

Test $\chi^2$ dla trendu (ang. Chi-square test for trend) służy do weryfikacji hipotezy o istnieniu trendu w proporcjach dla poszczególnych kategorii badanej zmiennej (cechy). Opiera się na danych zebranych w postaci tabeli kontyngencji 2 cech, z których pierwsza ma możliwe $r$ uporządkowanych kategorii: $X_1, X_2,..., X_r$ a druga 2 kategorie $G_1$, $G_2$.

\begin{tabular}{|c|c||c|c|c|}
\hline
\multicolumn{2}{|c||}{Liczności obserwowane }& \multicolumn{3}{|c|}{Cecha 2 (grupa)}\\\cline{3-5}
\multicolumn{2}{|c||}{$O_{ij}$} & $G_1$ & $G_2$ & Suma \\\hline \hline
\multirow{5}{*}{Cecha 1 (cecha $X$)}& $X_1$& $O_{11}$ & $O_{12}$ & $W_1=O_{11}+O_{12}$  \\\cline{2-5}
& $X_2$ & $O_{21}$ & $O_{22}$ & $W_2=O_{21}+O_{22}$  \\\cline{2-5}
& ... & ... & ... & ...  \\\cline{2-5}
& $X_r$ & $O_{r1}$ & $O_{r2}$ & $W_r=O_{r1}+O_{r2}$  \\\cline{2-5}
& Suma & $C_1=\sum_{i=1}^rO_{i1}$ & $C_2=\sum_{i=1}^rO_{i2}$ & $n=C_1+C_2$\\\hline
\end{tabular}

Podstawowe warunki stosowania:

Niech $p_1, p_2, ..., p_r$ oznaczają proporcje $p_1=\frac{O_{11}}{W_1}$, $p_2=\frac{O_{21}}{W_2}$,…, $p_r=\frac{O_{r1}}{W_r}$.

Hipotezy:

\begin{array}{cl}
\mathcal{H}_0: & $W badanej populacji nie istnieje trend w proporcjach $p_1, p_2, ..., p_r$, $\\
\mathcal{H}_1: & $W badanej populacji istnieje trend w proporcjach $p_1, p_2, ..., p_r$. $
\end{array}

Statystyka testowa ma postać: \begin{displaymath}
\chi^2=\frac{\left[\left(\sum_{i=1}^r i\cdot O_{i1}\right) -C_1\left(\sum_{i=1}^r\frac{i\cdot W_i}{n}\right)\right]^2}{\frac{C_1}{n}\left(1-\frac{C_1}{n}\right)\left[\left(\sum_{i=1}^n i^2 W_i\right)-n\left(\sum_{i=1}^n\frac{i \cdot W_i}{n}\right)^2\right]}.
\end{displaymath}

Statystyk ta ma rozkład chi-kwadrat z 1 stopniem swobody.

Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności poziomem istotności $\alpha$ :

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Okno z ustawieniami opcji testu Chi-kwadrat dla trendu wywołujemy poprzez menu StatystykaTesty nieparametryczneChi-kwadrat dla trendu lub poprzez ''Kreator''.

Przykład (plik widzowie.pqs)

Z powodu spadku oglądalności pewnego serialu telewizyjnego przeprowadzono badanie opinii widzów tego serialu. W tym celu przepytano 100 osób, które rozpoczęły oglądanie serialu w ostatnim czasie i 300, które oglądają systematycznie serial od początku. Zapytano ich między innymi o ocenę stopnia zaabsorbowania widza losami bohaterów. Wyniki zapisano w tabeli poniżej:

\begin{tabular}{|c||c|c|c|}
\hline
Stopień  & \multicolumn{3}{|c|}{grupa}\\\cline{2-4}
zaciekawienia & grupa nowych widzów & grupa stałych widzów & suma \\\hline \hline
raczej niewielki & 7 & 7 & 14  \\\hline
przeciętny & 13 & 25 & 38  \\\hline
raczej wysoki & 30 & 58 & 88  \\\hline
wysoki& 24 & 99 & 123\\\hline
bardzo wysoki  & 26& 111& 137\\\hline
suma & 100 & 300& 400\\\hline
\end{tabular}

Nowi widzowie stanowią 25% badanych. Taka proporcja nie utrzymuje się jednak dla każdej kategorii „stopnia zaciekawienia” ale przedstawia się następująco:

\begin{tabular}{|c||c|c|c|}
\hline
Stopień& \multicolumn{3}{|c|}{grupa}\\\cline{2-4}
zaciekawienia & grupa nowych widzów & grupa stałych widzów & suma \\\hline \hline
raczej niewielki & $p_1$=50.00\% & 50.00\% & 100\%  \\\hline
przeciętny & $p_2$=34.21\% & 65.79\% & 100\%  \\\hline
raczej wysoki & $p_3$=34.09\% & 65.91\% & 100\%  \\\hline
wysoki& $p_4$=19.51\% & 80.49\% & 100\%\\\hline
bardzo wysoki  & $p_5$=18.98\%& 81.02\%& 100\%\\\hline
\textbf{suma} & \textbf{25.00\%} & \textbf{75.00\%}& \textbf{100\%}\\\hline
\end{tabular}

Hipotezy:

\begin{array}{cl}
\mathcal{H}_0: & $w populacji widzów serialu nie istnieje trend w proporcjach $p_1, p_2, p_3, p_4, p_5$, $\\
\mathcal{H}_1: & $w populacji widzów serialu istnieje trend w proporcjach $p_1, p_2, p_3, p_4, p_5$. $
\end{array}

Wartość $p=0.000436$, co w porównaniu z poziomem istotności $\alpha$=0.05 świadczy o prawdziwości hipotezy alternatywnej mówiącej o występowaniu trendu w proporcjach $p_1, p_2, ..., p_5$. Jak wynika z tabeli kontyngencji wartości procentowych wyliczanych z sumy kolumn, jest to trend malejący (im grupa widzów jest bardziej zainteresowana losami bohaterów serialu, tym mniejszą jej część stanowią nowi widzowie).


Narzędzia witryny