Pasek boczny

statpqpl:wielowympl:logistpl:orpl

Iloraz Szans

Jednostkowy Iloraz Szans

Na podstawie współczynników, dla każdej zmiennej niezależnej w modelu, wylicza się łatwą w interpretacji miarę jaką jest jednostkowy Iloraz Szans:

\begin{displaymath}
OR_i=e^{\beta_i}.
\end{displaymath}

Otrzymany Iloraz Szans wyraża zmianę szansy na wystąpienie wyróżnionej wartości (1), gdy zmienna niezależna rośnie o 1 jednostkę. Wynik ten jest skorygowany o pozostałe zmienne niezależne znajdujące się w modelu w ten sposób, że zakłada iż pozostają one na stałym poziomie podczas, gdy badana zmienna niezależna rośnie o jednostkę.

Wartość OR interpretujemy następująco:

  • $OR >1$ oznacza stymulujący wpływ badanej zmiennej niezależnej na uzyskanie wyróżnionej wartości (1), tj. mówi o ile wzrasta szansa na wystąpienie wyróżnionej wartości (1), gdy zmienna niezależna wzrasta o jeden poziom.
  • $OR <1$ oznacza destymulujący wpływ badanej zmiennej niezależnej na uzyskanie wyróżnionej wartości (1), tj. mówi o ile spada szansa na wystąpienie wyróżnionej wartości (1), gdy zmienna niezależna wzrasta o jeden poziom.
  • $OR\approx1$ oznacza, że badana zmienna niezależna nie ma wpływu na uzyskanie wyróżnionej wartości (1).

[Iloraz Szans - wzór ogólny]

Program PQStat wylicza jednostkowy Iloraz Szans. Jego modyfikacja, na podstawie ogólnego wzoru, umożliwia zmianę interpretacji uzyskanego wyniku.

Iloraz szans na wystąpienie stanu wyróżnionego w ogólnym przypadku jest wyliczany jako iloraz dwóch szans. Zatem dla zmiennej niezależnej $X_1$ dla $Z$ wyrażonego zależnością liniową wyliczamy:

szansę dla kategorii pierwszej:

\begin{displaymath}
Szansa(1)=\frac{P(1)}{1-P(1)}=e^Z(1)=e^{\beta_0+\beta_1X_1(1)+\beta_2X_2+...+\beta_kX_k},
\end{displaymath}

szansę dla kategorii drugiej:

\begin{displaymath}
Szansa(2)=\frac{P(2)}{1-P(2)}=e^Z(2)=e^{\beta_0+\beta_1X_1(2)+\beta_2X_2+...+\beta_kX_k}.
\end{displaymath}

Iloraz Szans dla zmiennej $X_1$ wyraża się wówczas wzorem:

\begin{displaymath}
\begin{array}{lll}
OR_1(2)/(1) &=&\frac{Szansa(2)}{Szansa(1)}=\frac{e^{\beta_0+\beta_1X_1(2)+\beta_2X_2+...+\beta_kX_k}}{e^{\beta_0+\beta_1X_1(1)+\beta_2X_2+...+\beta_kX_k}}\\
&=& e^{\beta_0+\beta_1X_1(2)+\beta_2X_2+...+\beta_kX_k-[\beta_0+\beta_1X_1(1)+\beta_2X_2+...+\beta_kX_k]}\\
&=& e^{\beta_1X_1(2)-\beta_1X_1(1)}=e^{\beta_1[X_1(2)-X_1(1)]}=\\
&=& \left(e^{\beta_1}\right)^{[X_1(2)-X_1(1)]}.
\end{array}
\end{displaymath}

Przykład

Jeśli zmienną niezależną jest wiek wyrażony w latach, to różnica pomiędzy sąsiadującymi kategoriami wieku np. 25 lat i 26 lat wynosi 1 rok $\left(X_1(2)-X_1(1)=26-25=1\right)$. Wówczas otrzymamy jednostkowy Iloraz Szans: \begin{displaymath}OR=\left(e^{\beta_1}\right)^1,\end{displaymath} który mówi o ile zmieni się szansa na wystąpienie wyróżnionej wartości gdy wiek zmieni się o 1 rok.

Iloraz szans wyliczony dla niesąsiadujących kategorii zmiennej wiek np. 25 lat i 30 lat będzie pięcioletnim Ilorazem Szans, ponieważ różnica $X_1(2)-X_1(1)=30-25=5$. Wówczas otrzymamy pięcioletni Iloraz Szans: \begin{displaymath}OR=\left(e^{\beta_1}\right)^5,\end{displaymath} który mówi o ile zmieni się szansa na wystąpienie wyróżnionej wartości gdy wiek zmieni się o 5 lat.

Uwaga!

Jeśli analizę przeprowadzamy dla modelu innego niż liniowy, lub uwzględniamy interakcję, wówczas na podstawie ogólnego wzoru możemy wyliczyć odpowiedni Ilorazu Szans zmieniając formułę wyrażającą $Z$.

Przykład c.d. (plik zadanie.pqs)

Przykład c.d. (wada.pqs)

statpqpl/wielowympl/logistpl/orpl.txt · ostatnio zmienione: 2021/01/07 22:58 (edycja zewnętrzna)

Narzędzia strony