Pasek boczny

statpqpl:korelpl:parpl:rpbetaporpl

Porównanie nachylenia prostych regresji

Test t do sprawdzania równości współczynników regresji liniowej pochodzących z 2 niezależnych populacji

Test ten służy do weryfikacji hipotezy o równości dwóch współczynników regresji liniowej $\beta_1$ i $\beta_2$ w badanych populacjach.

Podstawowe warunki stosowania:

Hipotezy:

\begin{array}{cl}
\mathcal{H}_0: & \beta_1 = \beta_2, \\
\mathcal{H}_1: & \beta_1 \ne \beta_2.
\end{array}

Statystyka testowa ma postać:

\begin{displaymath}
t=\frac{\beta_1 -\beta_2}{\sqrt{\frac{s_{yx_1}^2}{sd_{x_1}^2(n_1-1)}+\frac{s_{yx_2}^2}{sd_{x_1}^2(n_2-1)}}},
\end{displaymath}

gdzie:

$\displaystyle s_{yx_1}=sd_{y_1}\sqrt{\frac{n_1-1}{n_1-2}(1-r_{p_1}^2)}$,

$\displaystyle s_{yx_2}=sd_{y_2}\sqrt{\frac{n_2-1}{n_2-2}(1-r_{p_2}^2)}$.

Statystyka testowa ma rozkład t-Studenta z $n_1+n_2-4$ stopniami swobody. Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności $\alpha$:

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Okno z ustawieniami opcji porównania współczynników zależności wywołujemy poprzez menu StatystykaTesty parametryczneporównanie współczynników zależności.

statpqpl/korelpl/parpl/rpbetaporpl.txt · ostatnio zmienione: 2022/01/23 21:39 przez admin

Narzędzia strony