Pasek boczny

en:statpqpl:korelpl:parpl:rpbetaporpl

Comparison of the slope of regression lines

The test for checking the equality of the coefficients of linear regression equation, which come from 2 independent populations

This test is used to verify the hypothesis determining the equality of 2 coefficients of the linear regression equation $\beta_1$ and $\beta_2$ in analysed populations.

Basic assumptions:

Hypotheses:

\begin{array}{cl}
\mathcal{H}_0: & \beta_1 = \beta_2, \\
\mathcal{H}_1: & \beta_1 \ne \beta_2.
\end{array}

The test statistic is defined by:

\begin{displaymath}
t=\frac{\beta_1 -\beta_2}{\sqrt{\frac{s_{yx_1}^2}{sd_{x_1}^2(n_1-1)}+\frac{s_{yx_2}^2}{sd_{x_1}^2(n_2-1)}}},
\end{displaymath}

where:

$\displaystyle s_{yx_1}=sd_{y_1}\sqrt{\frac{n_1-1}{n_1-2}(1-r_{p_1}^2)}$,

$\displaystyle s_{yx_2}=sd_{y_2}\sqrt{\frac{n_2-1}{n_2-2}(1-r_{p_2}^2)}$.

The test statistic has the t-Student distribution with $n_1+n_2-4$ degrees of freedom.

The p-value, designated on the basis of the test statistic, is compared with the significance level $\alpha$:

\begin{array}{ccl}
$ if $ p \le \alpha & \Longrightarrow & $ reject $ \mathcal{H}_0 $ and accept $ 	\mathcal{H}_1, \\
$ if $ p > \alpha & \Longrightarrow & $ there is no reason to reject $ \mathcal{H}_0. \\
\end{array}

The settings window with the comparison of correlation coefficients can be opened in Statistics menu → Parametric testsComparison of correlation coefficients.

en/statpqpl/korelpl/parpl/rpbetaporpl.txt · ostatnio zmienione: 2022/02/13 19:49 przez admin

Narzędzia strony