Istotność współczynnika korelacji tau Kendalla

Test do sprawdzania istotności współczynnika korelacji tau Kendalla

Test do sprawdzania istotności współczynnika korelacji $\tilde{\tau}$ Kendalla (ang. Test of significance for Kendall's tau correlation coefficient) służy do weryfikacji hipotezy o braku zależności monotonicznej pomiędzy badanymi cechami populacji i opiera się na współczynniku korelacji Kendalla wyliczonym dla próby. Im wartość wspołczynnika tau ($\tilde{\tau}$) jest bliższa 0, tym słabszą zależnością monotoniczną związane są badane cechy.

Podstawowe warunki stosowania:

Hipotezy:

\begin{array}{cl}
\mathcal{H}_0: & \tau = 0, \\
\mathcal{H}_1: & \tau \ne 0.
\end{array}

Statystyka testowa ma postać:

\begin{displaymath}
Z=\frac{3\tilde{\tau}\sqrt{n(n-1)}}{\sqrt{2(2n+5)}}.
\end{displaymath} Statystyka testowa ma asymptotycznie (dla dużych liczności) rozkład normalny.

Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności $\alpha$:

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Okno z ustawieniami opcji zależności monotonicznej Kendalla wywołujemy poprzez menu StatystykaTesty nieparametrycznezależność monotoniczna (tau-Kendalla) lub poprzez ''Kreator''.

Przykład c.d. (plik LDL tygodnie.pqs)

Hipotezy:


$
\begin{array}{cl}
\mathcal{H}_0: & $ W populacji nie istnieje zależność monotoniczna pomiędzy czasem kuracji a poziomem LDL,$\\
\mathcal{H}_1: & $ W populacji istnieje zależność monotoniczna pomiędzy czasem kuracji a poziomem LDL.$
\end{array}
$

Porównując wartość $p$<0.0001 z poziomem istotności $\alpha=0.05$ stwierdzamy, że istnieje ważna statystycznie monotoniczna zależność pomiędzy czasem kuracji a poziomem LDL. Zależność ta jest początkowo malejąca, a po 150 tygodniach zaczyna się stabilizować. Współczynnik korelacji monotonicznej Kendalla, a zatem siła związku monotonicznego dla tej zależności jest dość wysoki i wynosi $\tilde{\tau}$=-0.5975. Wykres wyrysowano dopasowując krzywą poprzez lokalne techniki wygładzania liniowego typu LOWESS.


Narzędzia witryny