Przykład dla regresji wielorakiej

Przykład (plik wydawca.pqs)

Pewien wydawca książek chciał się dowiedzieć, jaki wpływ na zysk brutto ze sprzedaży mają takie zmienne jak: koszty produkcji, koszty reklamy, koszty promocji bezpośredniej, suma udzielonych rabatów, popularność autora. W tym celu przeanalizował 40 pozycji wydanych w ciągu ostatniego roku. Fragment danych przedstawia poniższy rysunek:

Pięć pierwszych zmiennych wyrażonych jest w tysiącach dolarów - są to więc zmienne zebrane na skali interwałowej. Natomiast ostatnia zmienna: popularność autora $-$ to zmienna dychotomiczna, gdzie 1 oznacza autora znanego, 0 oznacza autora nieznanego.

Na podstawie uzyskanej wiedzy wydawca planuje przewidzieć zysk brutto z kolejnej wydawanej książki znanego autora. Koszty, jakie zamierza ponieść to: koszty produkcji $\approx 11$, koszty reklamy $\approx 13$, koszty promocji bezpośredniej $\approx 0.5$, suma udzielonych rabatów $\approx 0.5$.

Budujemy model liniowej regresji wielorakiej wybierając: zysk brutto $-$ jako zmienną zależną $Y$, koszty produkcji, koszty reklamy, koszty promocji bezpośredniej, suma udzielonych rabatów, popularność autora $-$ jako zmienne niezależne $X_1, X_2, X_3, X_4, X_5$. W rezultacie wyliczone zostaną współczynniki równania regresji oraz miary pozwalające ocenić jakość modelu.

Na podstawie oszacowanej wartości współczynnika $b$, związek pomiędzy zyskiem brutto a wszystkimi zmiennymi niezależnymi możemy opisać równaniem: \begin{displaymath}
zysk_{brutto}=4.18+2.56(k_{prod})+2(k_{rekl})+4.67(k_{prom})+1.42(rabaty)+10.15(popul_{autora})+[8.09]
\end{displaymath} Uzyskane współczynniki interpretujemy następująco:

  • Jeśli koszt produkcji wzrośnie o 1 tysiąc dolarów, to zysk brutto wzrośnie o około 2.56 tysiące dolarów, przy złożeniu, że pozostałe zmienne się nie zmienią;
  • Jeśli koszt reklamy wzrośnie o 1 tysiąc dolarów, to zysk brutto wzrośnie o około 2 tysiące dolarów, przy złożeniu, że pozostałe zmienne się nie zmienią;
  • Jeśli koszt promocji bezpośredniej wzrośnie o 1 tysiąc dolarów, to zysk brutto wzrośnie o około 4.67 tysiące dolarów, przy złożeniu, że pozostałe zmienne się nie zmienią;
  • Jeśli suma udzielonych rabatów wzrośnie o 1 tysiąc dolarów, to zysk brutto wzrośnie o około 1.42 tysiące dolarów, przy złożeniu, że pozostałe zmienne się nie zmienią;
  • Jeśli książka została napisana przez autora znanego (oznaczonego przez 1), to w modelu popularność autora przyjmujemy jako wartość 1 i otrzymujemy równanie:

\begin{displaymath}
zysk_{brutto}=14.33+2.56(k_{prod})+2(k_{rekl})+4.67(k_{prom})+1.42(rabaty)
\end{displaymath} Jeśli natomiast książka została napisana przez autora nieznanego (oznaczonego przez 0), to w modelu popularność autora przyjmujemy jako wartość 0 i otrzymujemy równanie: \begin{displaymath}
zysk_{brutto}=4.18+2.56(k_{prod})+2(k_{rekl})+4.67(k_{prom})+1.42(rabaty)
\end{displaymath} Wynik testu t-Studenta uzyskany dla każdej zmiennej wskazuje, że tylko koszt produkcji, koszt reklamy oraz popularność autora wywiera istotny wpływ na otrzymany zysk. Jednocześnie, dla tych zmiennych standaryzowane współczynniki $b$ są największe.

Dodatkowo, model jest dobrze dopasowany o czym świadczy: mały błąd standardowy estymacji $SE_e=8.086501$, wysoka wartość współczynnika determinacji wielorakiej $R^2=0.850974$ i poprawionego współczynnika determinacji wielorakiej $R_{adj}^2= 0.829059$ oraz wynik testu F analizy wariancji: $p<0.000001$.

Na podstawie interpretacji dotychczasowych wyników możemy przypuszczać, że część zmiennych nie wywiera istotnego wpływu na zysk i może być zbyteczna. Aby model był dobrze sformułowany interwałowe zmienne niezależne powinny być silnie skorelowane ze zmienną zależną i stosunkowo słabo pomiędzy sobą. Możemy to sprawdzić wyliczając macierz korelacji i macierz kowariancji:

Najbardziej spójną informację, pozwalającą znaleźć te zmienne w modelu, które są zbędne (nadmiarowe) niesie analiza korelacji cząstkowej i semicząstkowej i nadmiarowości:

Wartości współczynników korelacji cząstkowej i semicząstkowej wskazują, że najmniejszy wkład w budowany model mają: koszt promocji bezpośredniej i suma udzielonych rabatów. Jednak, są to zmienne najmniej skorelowane z pozostałymi w modelu, o czym świadczy niska wartość $R^2$ i wysoka wartość tolerancji. Ostatecznie, ze statystycznego punktu widzenia, modele bez tych zmiennych nie były by modelami gorszymi niż model obecny (patrz wynik testu t-Studenta dla porównywania modeli). To od decyzji badacza zależy, czy pozostawi ten model, czy zbuduje nowy model pozbawiony kosztów promocji bezpośredniej i sumy udzielonych rabatów. My pozostawiamy model obecny.

Na koniec przeprowadzimy analizę reszt. Fragment tej analizy znajduje się poniżej:

Możemy zauważyć, że jedna z reszt modelu jest obserwacją odstającą $-$ jest oddalona o więcej niż 3 odchylenia standardowe od wartości średniej. Jest to obserwacja o numerze 16. Obserwację te możemy łatwo znaleźć kreśląc wykres resz względem obserwowanych lub przewidywanych wartości zmiennej $Y$.

Ten odstający punkt zaburza założenie dotyczące homoskedastyczności. Założenie homoskedastyczności było by spełnione (tzn. wariancja reszt opisana na osi $Y$ byłaby podobna, gdy przechodzimy wzdłuż osi $X$), gdybyśmy ten punkt odrzucili. Dodatkowo, rozkład reszt nieco odbiega od rozkładu normalnego (wartość $p$ testu Lilieforsa wynosi $p=0.016415$):

Przyglądając się dokładniej punktowi odstającemu (pozycja 16 w danych do zadania) widzimy, że książka ta jako jedyna wykazuje wyższe koszty niż zysk brutto (zysk brutto = 4 tysiące dolarów, suma kosztów = (8+6+0.33+1.6) = 15.93 tysiące dolarów).

Uzyskany model możemy poprawić usuwając z niego punkt odstający. Wymaga to ponownego przeprowadzenia analizy z włączonym filtrem wykluczającym punkt odstający.

W rezultacie uzyskaliśmy bardzo podobny model, ale obarczony mniejszym błędem i lepiej dopasowany:

\begin{displaymath}
zysk_{brutto}=6.89+2.68(k_{prod})+2.08(k_{rekl})+1.92(k_{prom})+1.33(rabaty)+7.38(popul_{autora})+[4.86]
\end{displaymath} Ostatecznie zbudowany model wykorzystamy do predykcji. Na podstawie przewidywanych nakładów w wysokości: koszty produkcji $\approx 11$ tysięcy dolarów, koszty reklamy $\approx 13$ tysięcy dolarów, koszty promocji bezpośredniej $\approx 0.5$ tysiąca dolarów, suma udzielonych rabatów $\approx 0.5$ tysiąca dolarów,\\oraz faktu, że jest to autor znany (popularność autora $\approx 1$) wyliczamy przewidywany zysk brutto wraz z przedziałem ufności:

Przewidziany zysk wynosi 72 tysiące dolarów.

Na koniec należy jeszcze zauważyć, że jest to tylko model wstępny. W badaniu właściwym należałoby zebrać więcej danych. Liczba zmiennych w modelu jest bowiem zbyt mała w stosunku do liczby ocenianych książek tzn. n<50+8k


Narzędzia witryny