ANOVA Q-Cochrana

Analiza wariancji Q-Cochrana oparta na teście Q-Cochrana (ang. Q-Cochran test) opisana została przez Cochrana (1950)1). Test ten jest rozszerzeniem testu McNemara do $k\geq2$ grup zależnych. Służy do weryfikacji hipotezy o symetryczności pomiędzy wynikami kilkukrotnych pomiarów $X^{(1)}, X^{(2)},..., X^{(k)}$ cechy $X$. Badana cecha może mieć tylko 2 wartości, do których (dla potrzeb analizy) przypisywane są liczby 0 i 1.

Podstawowe warunki stosowania:

Hipotezy:

\begin{array}{cl}
\mathcal{H}_0: & $wszystkie "niezgodne" liczności obserwowane są sobie równe,$ \\
\mathcal{H}_1: & $nie wszystkie "niezgodne" liczności obserwowane są równe,$
\end{array}

gdzie:

„niezgodne” liczności obserwowane, to liczności obserwowane wyliczone, gdy wartość badanej cechy jest różna w kolejnych pomiarach.

Statystyka testowa ma postać:

\begin{displaymath}
Q=\frac{(k-1)\left(kC-T^2\right)}{kT-R}
\end{displaymath}

gdzie:

$T=\sum_{i=1}^n\sum_{j=1}^kx_{ij}$,

$R=\sum_{i=1}^n\left(\sum_{j=1}^kx_{ij}\right)^2$,

$C=\sum_{j=1}^k\left(\sum_{i=1}^nx_{ij}\right)^2$,

$x_{ij}$ $-$ wartość $j$-tego pomiaru dla $i$-tego obiektu (czyli 0 lub 1).

Statystyka ta ma asymptotycznie (dla dużych liczności) rozkład chi-kwadrat z liczbą stopni swobody wyznaczaną według wzoru: $df=k-1$.

Wyznaczoną na podstawie statystyki testowej wartość $p$ porównujemy z poziomem istotności $\alpha$:

\begin{array}{ccl}
$ jeżeli $ p \le \alpha & \Longrightarrow & $ odrzucamy $ \mathcal{H}_0 $ przyjmując $ 	\mathcal{H}_1, \\
$ jeżeli $ p > \alpha & \Longrightarrow & $ nie ma podstaw, aby odrzucić $ \mathcal{H}_0. \\
\end{array}

Testy POST-HOC

Wprowadzenie do kontrastów i testów POST-HOC przeprowadzone zostało w rozdziale dotyczącym jednoczynnikowej analizy wariancji.

Test Dunna

Stosowany dla porównań prostych (liczność w poszczególnych pomiarach zawsze jest taka sama).

Hipotezy:

Przykład - porównania proste (dla różnicy proporcji 1 wybranej pary pomiarów):

\begin{array}{cl}
\mathcal{H}_0: & $wybrane "niezgodne" liczności obserwowane są sobie równe,$ \\
\mathcal{H}_1: & $wybrane "niezgodne" liczności obserwowane są różne,$
\end{array}

\begin{displaymath}
NIR=Z_{\frac{\alpha}{c}}\sqrt{2\frac{kT-R}{n^2k(k-1)}},
\end{displaymath}

gdzie:

$\displaystyle Z_{\frac{\alpha}{c}}$ - to wartość krytyczna (statystyka) rozkładu normalnego dla poziomu istotności poziomu istotności $\alpha$ skorygowanego o liczbę możliwych porównań prostych $c$.

\begin{displaymath}
Z=\frac{\sum_{j=1}^k c_jp_j}{\sqrt{2\frac{kT-R}{n^2k(k-1)}}},
\end{displaymath}

gdzie:

$p_j$ $-$ proporcja $j$-tego pomiaru $(j=1,2,...k)$,

Statystyka ta ma asymptotycznie (dla dużych liczności) rozkład normalny, a wartość $p$ jest korygowana o liczbę możliwych porównań prostych $c$.

Okno z ustawieniami opcji ANOVA Q Cochrana wywołujemy poprzez menu StatystykaTesty nieparametryczneANOVA Q Cochrana lub poprzez ''Kreator''.

Uwaga!

Test ten jest możliwy do wyliczenia tylko na podstawie danych surowych.

Przykład (plik test.pqs)

Chcemy porównać trudność 3 pytań testowych. W tym celu z badanej populacji osób, do których adresowany jest test wybieramy 20 osobową próbę. Każda osoba z próby daje odpowiedzi na 3 pytania zawarte w teście. Następnie sprawdzamy poprawność tych odpowiedzi (osoba może odpowiedzieć poprawnie lub błędnie). Wyniki zawiera poniższa tabela:

\begin{tabular}{|c|c|c|c|}
\hline
Nr&Odpowiedź-pytanie1&Odpowiedź-pytanie2&Odpowiedź-pytanie3\\\hline
1&poprawna&poprawna&błędna\\
2&błędna&poprawna&błędna\\
3&poprawna&poprawna&poprawna\\
4&błędna&poprawna&błędna\\
5&błędna&poprawna&błędna\\
6&błędna&poprawna&poprawna\\
7&błędna&błędna&błędna\\
8&błędna&poprawna&błędna\\
9&poprawna&poprawna&błędna\\
10&błędna&poprawna&błędna\\
11&błędna&błędna&błędna\\
12&błędna&błędna&poprawna\\
13&błędna&poprawna&błędna\\
14&błędna&błędna&poprawna\\
15&poprawna&błędna&błędna\\
16&błędna&błędna&błędna\\
17&błędna&poprawna&błędna\\
18&błędna&poprawna&błędna\\
19&błędna&błędna&błędna\\
20&poprawna&poprawna&błędna\\\hline
\end{tabular}

Hipotezy:


$
\begin{array}{cl}
\mathcal{H}_0: & $poszczególne pytania uzyskały taką samą liczbę poprawnych odpowiedzi$\\
& $udzielonych przez osoby reprezentujące badaną populację,$\\
\mathcal{H}_1: & $liczba poprawnych odpowiedzi udzielonych przez osoby reprezentujące badaną$\\
& $populację jest inna w poszczególnych pytaniach testu.$
\end{array}
$

Porównując wartość $p=0.007699$ z poziomem istotności $\alpha=0.05$ stwierdzamy, że pytanie testowe wykazują różny stopień trudności. Wznawiamy analizę przyciskiem by wykonać test POST-HOC i w oknie opcji testu wybieramy POST-HOC Dunn.

Wykonana analiza POST-HOC wskazuje, że różnice dotyczą pytania 2 i 1 oraz 2 i 3. Różnica ta polega na tym, że pytanie 2 jest łatwiejsze niż 1 i 3 (liczba poprawnych odpowiedzi jest tu wyższa).

1)
Cochran W.G. (1950), The comparison ofpercentages in matched samples. Biometrika, 37, 256-266