Wiele informacji, które niosą współczynniki zwracane w tabelach można przedstawić na jednym wykresie. Umiejętność czytania wykresów pozwala na szybką interpretację wielu aspektów przeprowadzonej analizy. Wykresy zbierają w jednym miejscu informację dotyczącą wzajemnych relacji pomiędzy składowymi, zmiennymi pierwotnymi i przypadkami. Dają całościowy obraz analizy składowych głównych, przez co są bardzo dobrym jej podsumowaniem.
Wykres ładunków czynnikowych
Wykres przedstawia wektory połączone z początkiem układu współrzędnych, które to reprezentują zmienne pierwotne. Wektory te są umieszczone na płaszczyźnie wyznaczonej przez dwie wybrane składowe główne.
Długość wektora reprezentuje zasób informacyjny zmiennej pierwotnej, jaki niosą składowe główne wyznaczające układ współrzędnych. Im dłuższy wektor, tym wkład zmiennej pierwotnej w budowę składowych większy. W przypadku analizy opartej na macierzy korelacji ładunki są korelacjami pomiędzy zmiennymi pierwotnymi a składowymi, wówczas punkty wpadają do koła jednostkowego. Dzieje się tak dlatego, że współczynnik korelacji nie może przekroczyć jedynki. W rezultacie, im dana zmienna pierwotna leży bliżej brzegu tego koła, tym lepsza jest jej reprezentacja przez przedstawione główne składowe.
Znak współrzędnych końca wektora czyli znak ładunku czynnikowego - wskazuje na dodatnią lub ujemną korelację zmiennej pierwotnej i składowych głównych tworzących układ współrzędnych. Jeżeli rozpatrujemy łącznie obie osie (2 składowe), wówczas zmienne pierwotne mogą być kwalifikowane do jednej z czterech kategorii, zależnie od kombinacji znaków (

) ich ładunków czynnikowych.
Kąt między wektorami wskazuje na skorelowanie zmiennych pierwotnych:

: im kąt pomiędzy wektorami reprezentującymi zmienne pierwotne jest mniejszy tym silniejsza jest dodatnia korelacja pomiędzy tymi zmiennymi.

- wektory te są prostopadłe, czyli zmienne pierwotne nie są skorelowane.

- im kąt pomiędzy wektorami reprezentującymi zmienne pierwotne jest większy, tym silniejsza jest ujemna korelacja pomiędzy tymi zmiennymi.
Biplot
Wykres przedstawia 2 serie danych umieszczone w układzie współrzędnych wyznaczonych przez 2 składowe główne. Serię pierwszą na wykresie stanowią dane z wykresu pierwszego (czyli wektory zmiennych pierwotnych) a serię drugą punkty przedstawiające poszczególne przypadki.
Współrzędne punktów powinny być interpretowane jak wartości zestandaryzowane, tzn. współrzędne dodatnie wskazują na wartość wyższą od średniej wartości składowej głównej, ujemne na wartość niższą a im wyższa wartość bezwzględna tym dalej punkty znajdują się od średniej. Przy czym, jeśli na wykresie znajdują się obserwacje nietypowe - odstające, to mogą one zaburzać analizę i powinny być usunięte a analiza przeprowadzona ponownie.
Rzuty prostopadłe punktów na wektory interpretujemy tak samo jak współrzędne punktów, czyli rzuty na osie z tym, że interpretacja dotyczy nie składowych głównych a zmiennych pierwotnych. Wartości umieszczone po stronie końca wektora są większe od średniej wartości zmiennej pierwotnej a wartości umieszczone na przedłużeniu wektora ale w kierunku przeciwnym są wartościami mniejszymi od średniej.